• Posts tagged "统计"

Blog Archives

用R语言解读统计检验-卡方检验

R的极客理想系列文章,涵盖了R的思想,使用,cpcp彩票工具 ,创新等的一系列要点,以cpcp彩票我 个人的学习和体验去诠释R的强大。

R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,cpcp彩票互联网 ….都在使用R语言。

要成为有理想的极客,cpcp彩票cpcp彩票我 们 不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让cpcp彩票cpcp彩票我 们 一起动起来吧,开始R的极客理想。

cpcp彩票关于 作者:

  • 张丹(Conan), 程序员/Quant: Java,R,Nodejs
  • blog: http://whgmhg.com
  • email: bsspirit@gmail.com

转载请注明出处:
http://whgmhg.com/r-test-x2

前言

做统计分析R语言是最好的,R语言对于统计检验有非常好的支持。cpcp彩票我 会分7篇文章,分别介绍用R语言进行统计量和统计检验的计算过程,包括T检验F检验卡方检验P值KS检验AICBIC等常用的统计检验cpcp彩票方法 和统计量。

本文是第三篇卡方检验,卡方检验关注点在实际值与预测值的差距,对于预测类的模型给出了客观地评价cpcp彩票方法 。

目录

  1. 卡方检验介绍
  2. 数据集
  3. 四格表法推导过程
  4. 程序实现

1. 卡方检验介绍

卡方检验,又称χ2检验,是一种非参数检验,主要是比较两个以及两个以上样本率以及两个分类变量之间是否具有显著的相关性,其根本思想是统计样本的实际观测值与理论推断值之间的偏离程度。卡方检验,是由英国统计学家Karl Pearson在1900年首次提出的,在《哲学杂志》上发表。

卡方检验,实际观测值与理论推断值之间的偏离程度就决定卡方值的大小,如果卡方值越大,两个变量偏差程度越大;反之,卡方值越小两个变量偏差越小;如果两个变量的完全相等,卡方值就为0,表明观测值与理论值完全符合。

通常卡方检验的主要应用方向为:卡方拟合优度检验,卡方独立性检验。卡方检验可以分为成组比较(不配对资料)和个别比较(配对,或同一对象两种处理的比较)两类。卡方检验试用条件包括,随机样本数据,卡方检验的理论频数不能太小。

卡方检验的计算公式:


公式解释:

  • χ2,为统计量,用于衡量实际值与理论值的差异程度。
  • A,为实际值
  • T,为理论值
  • 自由度,df = n-1

卡方检验有3种推导过程:四格表法的卡方检验,行列表法的卡方检验,列联表法的卡方检验,本文将介绍四格表法的卡方检验。

2. 数据集

卡方检验,对于数据有比较严格的要求,所以cpcp彩票cpcp彩票我 们 需要先找到一个合适的数据集,作为测试数据集。

cpcp彩票cpcp彩票我 们 以“抛硬币”来作为卡方检验的使用场景。对于1次抛硬币来说,只有2种结果,正面是字,反面是头像,两种结果的出现概率相同都是50%,且每次抛硬币都是独立事件。那么,根据这个抛硬币的结果做出假设,原假设(H0)抛硬币出现正面和反面的概率都是50%,为验证这个假设成立,就是卡方检验。

开发环境所使用的系统环境

  • cpcp彩票Win 10 64bit
  • R: 3.6.1 x86_64-w64-mingw32/x64 b4bit

接下来,用随机过程模拟抛硬币的过程,设置抛硬币100次,1为正面,0为反面。


> N=100                 # 抛硬币100次
> set.seed(1)           # 随机种子
> coin<-sample(x=c(0,1), prob=c(0.5,0.5),size = N, replace = TRUE)  # 模拟抛硬币
> coin                  # 打印结果
  [1] 1 1 0 0 1 0 0 0 0 1 1 1 0 1 0 1 0 0 1 0 0 1 0 1 1 1 1 1 0 1 1 0 1 1 0 0 0 1 0 1 0 0 0 0
 [45] 0 0 1 1 0 0 1 0 1 1 1 1 1 0 0 1 0 1 1 1 0 1 1 0 1 0 1 0 1 1 1 0 0 1 0 0 1 0 1 1 0 1 0 1
 [89] 1 1 1 1 0 0 0 0 1 1 0 0

统计抛硬币的结果


> table(coin)  # 统计0和1的出现次数
coin
 0  1 
48 52 

用可视化展示累积的正面出现概率


> cnt <- cumsum(coin)  # 积累求和,正面1出现的次数
> n<-1:N               # 次数向量
> rate<- cnt/1:N       # 累积的正面出现概率
> plot(n,rate,type="o",log="x",   # 画图,x轴做log变型
+      xlim=c(1,N), ylim=c(0.0,1.0), cex.axis=1.5,
+      main="Running Proportion of Heads",cex.axis=1.5)

接下来,cpcp彩票cpcp彩票我 们 就以coin作为数据集,进行卡方检验的数据集。

3. 四格表法推导过程

四格表法的卡方检验,用于进行两个样本率或两个样本构成比的比较。

cpcp彩票cpcp彩票我 们 可以把抛硬币的过程,分成观察组和期望组,观察组就是上面随机过程的结果,期望组是cpcp彩票cpcp彩票我 们 根据概率的公式给出来的,把数据填入下面表格。

正面 反面 合计
观察次数 52 48 100
期望次数 50 50 100
合计 102 98 200

通过简单的计算,cpcp彩票cpcp彩票我 们 得出观察组的正面概率为52%和期望组的正面概率为50%,两者的差别可能是误差导致,也有可能是受到抛硬币的次数影响的。

为了确定真实原因,cpcp彩票cpcp彩票我 们 先假设抛硬币是符合大数定理的,是不受抛硬币的次数影响的,即抛硬币的次数和概率无关,cpcp彩票cpcp彩票我 们 可以得出正面结果的实际是(52+50) / (52+48+50+50)= 0.51 = 51%。

可推到出:

正面 反面 合计
观察次数 100*0.51 =51 100*(1-0.51) = 49 100
期望次数 100*0.51 =51 100*(1-0.51) = 49 100
合计 102 98 200

如果抛硬币次数与正面结果的概率是独立无关的,那么四格表里的理论值和实际值差别应该会很小。

代入公式进行计算。


X^2 = (52- 51)^2 / 51 + (48 - 49)^2 / 49 + (50 - 51)^2 / 51 + (50 - 49)^2 / 49 = 0.08003201

当以四格表法进行卡方检验时,还有一些限制条件,当两个独立样本比较时,需要分成以下3种情况:

  1. 所有的理论数T≥5并且总样本量n≥40,用Pearson卡方进行检验.
  2. 如果理论数T<5但T≥1,并且n≥40,用连续性校正的卡方进行检验.
  3. 如果有理论数T<1或n<40,则用Fisher’s检验.

根据限制条件,由于样本数据量为200大于40,所以需要对原公式进行修正。

修正公式为:


X^2 = (abs(52- 51)-0.5)^2 / 51 + (abs(48 - 49)-0.5)^2 / 49 + (abs(50 - 51)-0.5)^2 / 51 + (abs(50 - 49)-0.5)^2 / 49 
= 0.020008

最后,算出卡方统计量为0.020008。下面cpcp彩票cpcp彩票我 们 再用R语言的程序来算一下,看看是否是相同的结果。

4. 程序实现

用程序实现卡方检验,可以直接使用chisq.test()函数。


# 合并观测值和期望值,形成矩阵
> s<-c(table(coin),c(50,50))
> x <- matrix(s, ncol = 2, byrow=TRUE)
> x
     [,1] [,2]
[1,]   48   52
[2,]   50   50

# 卡方检验
> chisq.test(x)

	Pearson's Chi-squared test with Yates' continuity correction

data:  x
X-squared = 0.020008, df = 1, p-value = 0.8875

指标解释:

  • H0:抛硬币出现正面和反面的概率都是50%,与次数无关
  • X-squared统计量:0.020008
  • df,自由度,1
  • p-value值:0.8875

结果解读,以0.05为显著性水平,自由度df=1,统计量X-squared = 0.020008 小于临界值0.455(查表),说明X-squared值不显著,不能拒绝原假设。以0.05为显著性水平,p-value=0.8875大于0.05,所以不能拒绝原假设,说明抛硬币的次数与结果为正面的概率是没有关系的。这个结果与cpcp彩票cpcp彩票我 们 构造的数据是一致的,也是符合大数定理的。

查看观察值和期望值。


# 查看观察值
> chi$observed
     [,1] [,2]
[1,]   48   52
[2,]   50   50

# 查看期望值
> chi$expected
     [,1] [,2]
[1,]   49   51
[2,]   49   51

# 残差
> chi$residuals
           [,1]      [,2]
[1,] -0.1428571  0.140028
[2,]  0.1428571 -0.140028

手动计算X^2值和P值,cpcp彩票关于 P值的详细解释,请查看文章R语言实现统计检验-P值


# 手动计算X^2值
> sr <- rowSums(x)
> sc <- colSums(x)
> n <- sum(x)
> E <- outer(sr, sc, "*")/n;E
     [,1] [,2]
[1,]   49   51
[2,]   49   51
> x2 <- sum((abs(x - E) - 0.5)^2/E);x2
[1] 0.020008

# 手动计算P值
> pchisq(x2, 1, lower.tail = FALSE)
[1] 0.8875147

本文用R语言详细介绍了卡方检验的计算过程,x^2越小,越能验证假设是正确的,越能说明观测值与期望值是一致的,x^2越大,越证明假设是错误的,预测越不准。为预测类的模型提供了评价标准。

转载请注明出处:
http://whgmhg.com/r-test-x2

打赏作者

用R语言解读统计检验-F检验

R的极客理想系列文章,涵盖了R的思想,使用,cpcp彩票工具 ,创新等的一系列要点,以cpcp彩票我 个人的学习和体验去诠释R的强大。

R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,cpcp彩票互联网 ….都在使用R语言。

要成为有理想的极客,cpcp彩票cpcp彩票我 们 不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让cpcp彩票cpcp彩票我 们 一起动起来吧,开始R的极客理想。

cpcp彩票关于 作者:

  • 张丹(Conan), 程序员/Quant: Java,R,Nodejs
  • blog: http://whgmhg.com
  • email: bsspirit@gmail.com

转载请注明出处:
http://whgmhg.com/r-test-f

前言

做统计分析R语言是最好的,R语言对于统计检验有非常好的支持。cpcp彩票我 会分7篇文章,分别介绍用R语言进行统计量和统计检验的计算过程,包括T检验F检验卡方检验P值KS检验AICBIC等常用的统计检验cpcp彩票方法 和统计量。

本文是第二篇F检验,T检验关注点在均值,而F检验关注点在方差。

目录

  1. F检验介绍
  2. 数据集
  3. F检验实现

1. F检验介绍

F检验法(F-test),初期叫方差比率检验(Variance Ratio),又叫联合假设检验(Joint Hypotheses Test),是英国统计学家Fisher提出的,主要通过比较两组数据的方差,以确定他们的密度是否有显著性差异。至于两组数据之间是否存在系统误差,则在进行F检验并确定它们的密度没有显著性差异之后,再进行T检验

F检验,是一种在零假设(H0)之下,统计值服从F-分布的检验。

样本标准偏差的平方公式:

F统计量计算公式:


公式解释

  • F:统计量,根据自由度查表,当F值小于查表值时没有显著差异,当F值大于等于查表值时有显著差异
  • S1:样本1的标准差
  • S2:样本2的标准差
  • 分子自由度: df=分子的数量-1
  • 分母自由度: df=分母的数量-1

T检验和F检验对比
T检验用来检测数据的准确度(系统误差),F检验用来检测数据的精密度(偶然误差)。在定量分析过程中,常遇到两种情况:一种是样本测量的平均值与真值不一致;另一种是两组测量的平均值不一致。

上述不一致是由于定量分析中的系统误差和偶然误差引起的,因此必须对两组分析结果的准确度或精密度是否存在显著性差异做出判断,两组数据的显著性检验顺序是先F检验后T检验。

T检验是检查两组均值的差异,而F检验是检查多组均值之间的差异。

对于多元线性回归模型,t检验是对于单个变量进行显著性,检验该变量独自对被解释变量的影响。f检验是检验回归模型的显著意义,即所有解释变量联合起来对被解释变量的影响,cpcp彩票关于 线性回归请参考文章,R语言解读一元线性回归模型R语言解读多元线性回归模型

2. 数据集

F检验,对于数据有比较严格的要求,所以cpcp彩票cpcp彩票我 们 需要先找到一个合适的数据集,作为测试数据集。cpcp彩票我 发现了R语言自带的一个数据集ToothGrowth,是很好的测试数据集,本文接下来的内容,将以这个数据集进行测试,来介绍F检验。

开发环境所使用的系统环境

  • cpcp彩票Win 10 64bit
  • R: 3.4.2 x86_64-w64-mingw32/x64 b4bit

数据集ToothGrowth,记录了60只豚鼠的牙齿生长速度,使用2种不同的cpcp彩票方法 (OJ和VC),每天按3种不同的注射剂量进行注射,对牙齿的生长速度的对比数据,共3列,60条记录。

  • len列,为牙齿长度
  • supp列,为注射cpcp彩票方法
  • dose列,为注射剂量

查看数据集,打印前10行


> head(ToothGrowth,10)
    len supp dose
1   4.2   VC  0.5
2  11.5   VC  0.5
3   7.3   VC  0.5
4   5.8   VC  0.5
5   6.4   VC  0.5
6  10.0   VC  0.5
7  11.2   VC  0.5
8  11.2   VC  0.5
9   5.2   VC  0.5
10  7.0   VC  0.5

F检验对于数据的正态性非常敏感,cpcp彩票cpcp彩票我 们 需要先对选定数据集进行进行正态分布检验。使用Shapiro-Will作为正态分布检验的cpcp彩票方法 ,原假设H0:样本符合正态分布。


# 按不同的处理cpcp彩票方法
,进行分组
> len_VC<-ToothGrowth$len[which(ToothGrowth$supp=='VC')]
> len_OJ<-ToothGrowth$len[which(ToothGrowth$supp=='OJ')]

# 正态分布检验
> shapiro.test(len_VC)

	Shapiro-Wilk normality test

data:  len_VC
W = 0.96567, p-value = 0.4284

# 正态分布检验
> shapiro.test(len_OJ)

	Shapiro-Wilk normality test

data:  len_OJ
W = 0.91784, p-value = 0.02359

两个样本的W统计量都接近1,且p-value都大于0.05,不能拒绝原假设,两组样本数据为正态分布。

查看数据的相关性。


> coplot(len ~ dose | supp, data = ToothGrowth, panel = panel.smooth,
       xlab = "ToothGrowth data: length vs dose, given type of supplement")

3. F检验实现

3.1 随机数进行F检验
cpcp彩票cpcp彩票我 们 先用一种随机数,来做一下F检验。以正态分布生成2组数据,数量,均值,方差都不同,进行F检验。


# 生成随机数
> set.seed(1)
> x <- rnorm(50, mean = 0, sd = 2)
> y <- rnorm(30, mean = 1, sd = 1)

# 进行F检验
> var.test(x, y)

	F test to compare two variances

data:  x and y
F = 2.6522, num df = 49, denom df = 29, p-value
= 0.006232
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
 1.332510 4.989832
sample estimates:
ratio of variances 
          2.652168 

指标解释:

  • H0:原假设2组样本的方差,无显著差异
  • F统计量:2.6522
  • num df,分子自由度,50-1=49
  • denom df,分每自由度,30-1=29
  • p-value值:0.006232
  • 95 percent confidence interval:95%的置信区间
  • ratio of variances:方差比率2.652168

结果解读,以0.05为显著性水平,F = 2.6522大于临界值1.81(查表),F值显著,拒绝原假设。以0.05为显著性水平,p-value=0.006232小于0.05,拒绝原假设,两样本方差有显著性差异。这个结果与cpcp彩票cpcp彩票我 们 构造的数据是一致的,样本的方差就是不同的。

3.2 ToothGrowth进行F检验
使用ToothGrowth数据集进行F检验,原假设HO,用VC和OJ两种cpcp彩票方法 按3种剂量进行注射,对于60只豚鼠的牙齿生长速度的方差,没有显著性差异。


> var.test(len_VC,len_OJ)

	F test to compare two variances

data:  len_VC and len_OJ
F = 1.5659, num df = 29, denom df = 29, p-value
= 0.2331
alternative hypothesis: true ratio of variances is not equal to 1
95 percent confidence interval:
 0.745331 3.290028
sample estimates:
ratio of variances 
          1.565937 

结果解读,以0.05为显著性水平,F=1.5659小于临界值1.90(查表),F值不显著,不能拒绝原假设。以0.05为显著性水平,p-value=0.2331大于0.05,不能拒绝原假设,所以两种cpcp彩票方法 的3种剂量实验的方差,没有显著性的差异。

cpcp彩票cpcp彩票我 们 可以用F值进行显著性差异判断,也可以用p值进行显著性差异判断,他们的作用是一样的。F值判断时,需要用计算所得的F值,与显著性水平查表对比。p值相当于是把F值,进行一种标准化的变型,只和已经定义好的显著性水平比就行了,比如0.05, 0.01, 0.001等几个固定值。

手动计算F值和P值,cpcp彩票关于 P值的详细解释,请查看文章R语言实现统计检验-P值


# 手动计算T值
> Xn<-length(len_VC)
> Yn<-length(len_OJ)
> Xm<-mean(len_VC)
> Ym<-mean(len_OJ)

# 计算两组样本的偏方差
> fx<-sum((len_VC-Xm)^2)/(Xn-1)
> fy<-sum((len_OJ-Ym)^2)/(Yn-1)

# 计算F值
> fx/fy
[1] 1.565937

# 手动计算P值,双边检验
> p_value<-pf(f_stat,Yn-1,Xn-1)
> p_value<-2*min(p_value, 1 - p_value);p_value
[1] 0.2331433

用F检验测试样本数据的偶然误差,对数据集进行方差齐性检验,从而判断数据是否有显著性差异,为方差分析提供了基本的判别cpcp彩票方法 ,对于研究数据的波动性是非常有用的。

转载请注明出处:
http://whgmhg.com/r-test-f

打赏作者

用R语言解读统计检验-T检验

R的极客理想系列文章,涵盖了R的思想,使用,cpcp彩票工具 ,创新等的一系列要点,以cpcp彩票我 个人的学习和体验去诠释R的强大。

R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,cpcp彩票互联网 ….都在使用R语言。

要成为有理想的极客,cpcp彩票cpcp彩票我 们 不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让cpcp彩票cpcp彩票我 们 一起动起来吧,开始R的极客理想。

cpcp彩票关于 作者:

  • 张丹(Conan), 程序员/Quant: Java,R,Nodejs
  • blog: http://whgmhg.com
  • email: bsspirit@gmail.com

转载请注明出处:
http://whgmhg.com/r-test-t

前言

做统计分析R语言是最好的,R语言对于统计检验有非常好的支持。cpcp彩票我 会分7篇文章,分别介绍用R语言进行统计量和统计检验的计算过程,包括T检验F检验卡方检验P值KS检验AICBIC等常用的统计检验cpcp彩票方法 和统计量。

本文先从T检验开始说起!

目录

  1. T检验介绍
  2. 数据集
  3. 单总体T检验
  4. 双总体T检验

1. T检验介绍

T检验,也称 student t检验(Student’s t test),是戈斯特为了观测酿酒质量发明的。戈斯特于1908年在Biometrika上公布T检验,但因其老板认为其为商业机密而被迫使用笔名(cpcp彩票学生 )。

T检验,是用于检验两个小样本的平均值差异程度的检验cpcp彩票方法 ,样本量在3-30个左右,要求样本为正态分布,但总体标准差可未知。T检验,是用T分布理论来推断差异发生的概率,从而判定两个样本平均值的差异是否显著。T检验可分为单总体T检验,双总体非配对T检验,和双总体配对T检验。下面将分别进行介绍。

2. 数据集

T检验,对于数据有比较严格的要求,所以cpcp彩票cpcp彩票我 们 需要先找到一个合适的数据集,作为测试数据集。cpcp彩票我 发现了R语言自带的一个数据集sleep,是很好的测试数据集,本文接下来的内容,将以这个数据集进行测试,来介绍T检验。

开发环境所使用的系统环境

  • cpcp彩票Win 10 64bit
  • R: 3.4.2 x86_64-w64-mingw32/x64 b4bit

数据集,记录了10名患者使用两种催眠药物影响的对比数据,共3列,20条记录。

  • extra列,为睡眠时间的变化
  • group列,为药物编号
  • ID列,为患者编号

查看数据集。


> data(sleep)
> sleep
   extra group ID
1    0.7     1  1
2   -1.6     1  2
3   -0.2     1  3
4   -1.2     1  4
5   -0.1     1  5
6    3.4     1  6
7    3.7     1  7
8    0.8     1  8
9    0.0     1  9
10   2.0     1 10
11   1.9     2  1
12   0.8     2  2
13   1.1     2  3
14   0.1     2  4
15  -0.1     2  5
16   4.4     2  6
17   5.5     2  7
18   1.6     2  8
19   4.6     2  9
20   3.4     2 10

由于T检验的前提条件,总体要符合正态分布,只是总体方差未知。所以,cpcp彩票cpcp彩票我 们 需要先对选定数据集进行进行正态分布检验。使用Shapiro-Wilk和qq图,作为正态分布检验的cpcp彩票方法 。

Shapiro-Wilk正态分布检验: 用来检验是否数据符合正态分布,类似于线性回归的cpcp彩票方法 一样,是检验其于回归曲线的残差。该cpcp彩票方法 cpcp彩票推荐 在样本量很小的时候使用,样本在3到5000之间。该检验原假设为H0:数据集符合正态分布,统计量为W。统计量W最大值是1,越接近1,表示样本与正态分布匹配。p值,当p-value小于显著性水平α(0.05),则拒绝H0。


> shapiro.test(sleep$extra) # 总体正态分布

	Shapiro-Wilk normality test

data:  sleep$extra
W = 0.94607, p-value = 0.3114

检验结果,W接近1,p-value>0.05,不能拒绝原假设,所以数据集sleep是符合正态分布的。

接下来,cpcp彩票cpcp彩票我 们 再画出qq图,直观的看一下数据符合正态分布的情况。

图中,对角线基本能穿过数据点,也说明数据符合正态分布。

3. 单总体的T检验

目的:单总体T检验,是检验一个样本平均值与一个已知的总体平均值的差异是否显著。当总体分布是正态分布,如总体标准差未知且样本容量较小,那么样本平均数与总体平均数的离差统计量呈t分布。

适用条件:

  1. 已知总体均值Um
  2. 可得到样本均值Xm,及该样本标准误差Xs
  3. 样本来自正态或近似正态总体

计算公式:T统计量

公式解释:

  • Xm:样本均值
  • Um:总体均值
  • Xs:样本标准差
  • n:样本个数
  • 自由度:df=n-1

用R语言进行T检验,取sleep数据集做为总体,符合正态分布,总体平均值为1.54,以group=1为样本组,共10条记录,样本均值为0.75,样本标准差为1.78901。判断group=1分组的药物,是否有显著性改进睡眠?


#  总体均值
> Um<-mean(sleep$extra) 

# 取group=1的样本组
> g1<-sleep$extra[which(sleep$group==1)]

# 计算样本均值,方差,数量
> Xm<-mean(g1)
> Xs<-sd(g1)
> n<-length(g1)

# 进行T检验
> t.test(g1,mu=Um)

	One Sample t-test

data:  g1
t = -1.3964, df = 9, p-value = 0.1961
alternative hypothesis: true mean is not equal to 1.54
95 percent confidence interval:
 -0.5297804  2.0297804
sample estimates:
mean of x 
     0.75 

指标解释:

  • H0:原假设总体和样本均值无显著差异
  • t统计量:-1.3964
  • df,自由度,10-1=9
  • p-value值:0.1961
  • 95 percent confidence interval:95%的置信区间
  • mean:样本均值0.75

结果解读,以0.05为显著性水平,t=-1.3964小于临界值2.228(查表),t值不显著,不能拒绝原假设。以0.05为显著性水平,p-value=0.19大于0.05,不能拒绝原假设,group=1的药物对睡眠没有明显改进。

cpcp彩票cpcp彩票我 们 可以用t值进行显著性差异判断,也可以用p值进行显著性差异判断,他们的作用是一样的。t值判断时,需要用计算所得的t值,与显著性水平查表对比。p值相当于是把t值,进行一种标准化的变型,只和已经定义好的显著性水平比就行了,比如0.05, 0.01, 0.001等几个固定值。

手动计算T值和P值,cpcp彩票关于 P值的详细解释,请查看文章R语言实现统计检验-P值


# 手动计算T值
> t_stat<-(Xm-Um) / (Xs/(sqrt(n)));t_stat 
[1] -1.396415

# 手动计算P值
> p_value<-2*pt(-abs(t_stat),df=n-1);p_value    
[1] 0.1960699

4. 双总体T检验

双总体T检验,是检验两个样本平均值,与其各自所代表的总体的差异是否显著。双总体T检验又分为两种情况,一种是配对的样本T检验,用于检验两种同质对象,在不同条件下所产生的数据差异性;另一种是独立样本非配对T检验,用于检验两组独立的样本的平均数差异性。

4.1 配对T检验

目标:检验两组同质样本,在不同的处理下的样本平均值,是否有显著的差异性。

配对设计:将2组样本的某些重要特征按相近的原则配成对子,消除混杂因素的影响,观察样本之间的处理因素和研究因素的差异,其它因素基本相同,把配对两组样本个体随机处理。

配对过程如下3种情况:

  • 两种同质样本,分别接受两种不同的处理,如性别、年龄、体重、病情程度相同进行配对。
  • 同一样本或同一样本的两个部分,分别接受两种不同的处理。
  • 同一样本自身对比,把同一组样本处理前后的结果进行比较。

计算公式:

公式解释:

  • D:两个样本差值
  • εD:求和
  • ε(D^2):平方和
  • n:样本个数
  • 自由度:df=n-1

使用sleep数据集,按group分成2个组,形成配对的数据集。H0原假设,g1和g2两个样本组均值没有显著性差异,对治疗睡眠的效果是一致的。


# 配对T检验
> t.test(extra ~ group, data = sleep, paired = TRUE)

	Paired t-test

data:  extra by group
t = -4.0621, df = 9, p-value = 0.002833
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -2.4598858 -0.7001142
sample estimates:
mean of the differences 
                  -1.58 

结果解读,以0.05为显著性水平,p-value=0.002833<0.05,说明g1和g2有显著性的差异,可以拒绝原假设。

接下来,cpcp彩票cpcp彩票我 们 动手自己算一下T值


# 生成数据集
> g1<-sleep$extra[which(sleep$group==1)]
> g2<-sleep$extra[which(sleep$group==2)]

# 配对T检验,与上面的计算结果是一致的
> t.test(g1,g2,paired=TRUE)

	Paired t-test

data:  g1 and g2
t = -4.0621, df = 9, p-value = 0.002833
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -2.4598858 -0.7001142
sample estimates:
mean of the differences 
                  -1.58 

# 动手计算
> n1<-length(g1)
> n2<-length(g2)
> D<-g1-g2
> Ds<-sum(D)

# 计算T值
> Ds/sqrt((n1*sum(D^2)-sum(D)^2)/(n1-1))
[1] -4.062128

4.2 非配对T检验

目标:用于检验两组独立的样本的平均数差异性。

计算公式:

  • n1 和n2 为两样本容量
  • Xm1和Xm2为两样本均值
  • Xs1和Xs2为两样本的标准差

继续使用sleep数据集,按group分成2个组,形成独立的样本,病人按随机进行配对,去掉关联关系。H0原假设,随机选取g1和g2两个样本组均值没有显著性差异,对治疗睡眠的效果是一致的。


> t.test(extra ~ group, data = sleep)

	Welch Two Sample t-test

data:  extra by group
t = -1.8608, df = 17.776, p-value = 0.07939
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -3.3654832  0.2054832
sample estimates:
mean in group 1 mean in group 2 
           0.75            2.33 

结果解读,以0.05为显著性水平,p-value=0.07939>0.05,说明g1和g2有没显著性的差异,不能拒绝原假设,两种cpcp彩票方法 对于治疗效果是一致的。

接下来,cpcp彩票cpcp彩票我 们 动手自己算一下T值。


# 计算数量,均值,标准差
> n1<-length(g1)
> n2<-length(g2)
> Xm1<-mean(g1)
> Xm2<-mean(g2)
> Xs1<-sd(g1)
> Xs2<-sd(g2)
 
# 计算T值
> (Xm1-Xm2)/sqrt((Xs1^2/n1)+(Xs2^2/n2))
[1] -1.860813

画出箱线图,观察两组数据的均值。


> boxplot(extra~group,data=sleep)


图中,每个箱的最粗的黑色线,表示两个样本的均值。

以双总体进行T检验,当是样本是配对时,g1和g2有显著性差异;而当样本是独立时,g1和g2没有显著性差异。由于cpcp彩票cpcp彩票我 们 变化了初始的假设,是会很大的程度影响统计结果的,所以在使用统计学模型时,要做非常严格的条件判断,从而保证结果的可靠性,可解释性。

转载请注明出处:
http://whgmhg.com/r-test-t

打赏作者

R语言解读多元线性回归模型

R的极客理想系列文章,涵盖了R的思想,使用,cpcp彩票工具 ,创新等的一系列要点,以cpcp彩票我 个人的学习和体验去诠释R的强大。

R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,cpcp彩票互联网 ….都在使用R语言。

要成为有理想的极客,cpcp彩票cpcp彩票我 们 不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让cpcp彩票cpcp彩票我 们 一起动起来吧,开始R的极客理想。

cpcp彩票关于 作者:

  • 张丹(Conan), 程序员R,Nodejs,Java
  • weibo:@Conan_Z
  • blog: http://whgmhg.com
  • email: bsspirit@gmail.com

转载请注明出处:
http://whgmhg.com/r-multi-linear-regression

reg-multi-liner

前言

本文接上一篇R语言解读一元线性回归模型。在许多cpcp彩票生活和工作的实际问题中,影响因变量的因素可能不止一个,比如对于知识水平越高的人,收入水平也越高,这样的一个结论。这其中可能包括了因为更好的家庭条件,所以有了更好的教育;因为在一线城市发展,所以有了更好的工作机会;所处的cpcp彩票行业 赶上了大的经济上行周期等。要想解读这些规律,是复杂的、多维度的,多元回归分析cpcp彩票方法 更适合解读cpcp彩票生活的规律。

由于本文为非统计的专业文章,所以当出现与教课书不符的描述,请以教课书为准。本文力求用简化的语言,来介绍多元线性回归的知识,同时配合R语言的实现。

目录

  1. 多元线性回归介绍
  2. 元线性回归建模
  3. 模型cpcp彩票优化
  4. 案例:黑色系期货日K线数据验证

1. 多元线性回归介绍

对比一元线性回归,多元线性回归是用来确定2个或2个以上变量间关系的统计分析cpcp彩票方法 。多元线性回归的基本的分析cpcp彩票方法 与一元线性回归cpcp彩票方法 是类似的,cpcp彩票cpcp彩票我 们 首先需要对选取多元数据集并定义数学模型,然后进行参数估计,对估计出来的参数进行显著性检验,残差分析,异常点检测,最后确定回归方程进行模型预测。

由于多元回归方程有多个自变量,区别于一元回归方程,有一项很重要的操作就是自变量的cpcp彩票优化 ,挑选出相关性最显著的自变量,同时去除不显著的自变量。在R语言中,有很方便地用于cpcp彩票优化 函数,可以很好的cpcp彩票帮助 cpcp彩票cpcp彩票我 们 来改进回归模型。

下面就开始多元线性回归的建模过程。

2. 多元线性回归建模

做过商品期货研究的人,都知道黑色系品种是具有产业链上下游的关系。铁矿石是炼钢的原材料,焦煤和焦炭是炼钢的能源资源,热卷即热轧卷板是以板坯为原料经加热后制成的钢板,螺纹钢是表面带肋的钢筋。

由于有产业链的关系,假设cpcp彩票cpcp彩票我 们 想要预测螺纹钢的价格,那么影响螺纹钢价格的因素可以会涉及到原材料,能源资源和同类材料等。比如,铁矿石价格如果上涨,螺纹钢就应该要涨价了。

2.1 数据集和数学模型

先从数据开始介绍,这次的数据集,cpcp彩票我 选择的期货黑色系的品种的商品期货,包括了大连期货交易所的 焦煤(JM),焦炭(J),铁矿石(I),cpcp彩票上海 期货交易所的 螺纹钢(RU) 和 热卷(HC)。

数据集为2016年3月15日,当日白天开盘的交易数据,为黑色系的5个期货合约的分钟线的价格数据。


# 数据集已存在df变量中
> head(df,20)
                       x1    x2    x3   x4    y
2016-03-15 09:01:00 754.5 616.5 426.5 2215 2055
2016-03-15 09:02:00 752.5 614.5 423.5 2206 2048
2016-03-15 09:03:00 753.0 614.0 423.0 2199 2044
2016-03-15 09:04:00 752.5 613.0 422.5 2197 2040
2016-03-15 09:05:00 753.0 615.5 424.0 2198 2043
2016-03-15 09:06:00 752.5 614.5 422.0 2195 2040
2016-03-15 09:07:00 752.0 614.0 421.5 2193 2036
2016-03-15 09:08:00 753.0 615.0 422.5 2197 2043
2016-03-15 09:09:00 754.0 615.5 422.5 2197 2041
2016-03-15 09:10:00 754.5 615.5 423.0 2200 2044
2016-03-15 09:11:00 757.0 616.5 423.0 2201 2045
2016-03-15 09:12:00 756.0 615.5 423.0 2200 2044
2016-03-15 09:13:00 755.5 615.0 423.0 2197 2042
2016-03-15 09:14:00 755.5 615.0 423.0 2196 2042
2016-03-15 09:15:00 756.0 616.0 423.5 2200 2045
2016-03-15 09:16:00 757.5 616.0 424.0 2205 2052
2016-03-15 09:17:00 758.5 618.0 424.0 2204 2051
2016-03-15 09:18:00 759.5 618.5 424.0 2205 2053
2016-03-15 09:19:00 759.5 617.5 424.5 2206 2053
2016-03-15 09:20:00 758.5 617.5 423.5 2201 2050

数据集包括有6列:

  • 索引, 为时间
  • x1, 为焦炭(j1605)合约的1分钟线的报价数据
  • x2, 为焦煤(jm1605)合约的1分钟线的报价数据
  • x3, 为铁矿石(i1605)合约的1分钟线的报价数据
  • x4, 为热卷(hc1605)合约的1分钟线的报价数据
  • y, 为螺纹钢(rb1605)合约的1分钟线的报价数据

假设螺纹钢的价格与其他4个商品的价格有线性关系,那么cpcp彩票cpcp彩票我 们 建立以螺纹钢为因变量,以焦煤、焦炭、铁矿石和热卷的为自变量的多元线性回归模型。用公式表示为:

y = a + b * x1 + c * x2 + d * x3 + e * x4 + ε
  • y,为因变量,螺纹钢
  • x1,为自变量,焦煤
  • x2,为自变量,焦炭
  • x3,为自变量,铁矿石
  • x4,为自变量,热卷
  • a,为截距
  • b,c,d,e,为自变量系数
  • ε, 为残差,是其他一切不确定因素影响的总和,其值不可观测。假定ε服从正态分布N(0,σ^2)。

通过对多元线性回归模型的数学定义,接下来让cpcp彩票cpcp彩票我 们 利用数据集做多元回归模型的参数估计。

2.2. 回归参数估计

上面公式中,回归参数 a, b, c, d,e都是cpcp彩票cpcp彩票我 们 不知道的,参数估计就是通过数据来估计出这些参数,从而确定自变量和因变量之前的关系。cpcp彩票cpcp彩票我 们 的目标是要计算出一条直线,使直线上每个点的Y值和实际数据的Y值之差的平方和最小,即(Y1实际-Y1预测)^2+(Y2实际-Y2预测)^2+ …… +(Yn实际-Yn预测)^2 的值最小。参数估计时,cpcp彩票cpcp彩票我 们 只考虑Y随X自变量的线性变化的部分,而残差ε是不可观测的,参数估计法并不需要考虑残差。

类似于一元线性回归,cpcp彩票cpcp彩票我 们 用R语言来实现对数据的回归模型的参数估计,用lm()函数来实现多元线性回归的建模过程。


# 建立多元线性回归模型
> lm1<-lm(y~x1+x2+x3+x4,data=df)

# 打印参数估计的结果
> lm1

Call:
lm(formula = y ~ x1 + x2 + x3 + x4, data = df)

Coefficients:
(Intercept)           x1           x2           x3           x4  
   212.8780       0.8542       0.6672      -0.6674       0.4821  

这样cpcp彩票cpcp彩票我 们 就得到了y和x关系的方程。

y = 212.8780 + 0.8542 * x1 + 0.6672 * x2 - 0.6674 * x3 + 0.4821 * x4

2.3. 回归方程的显著性检验

参考一元线性回归的显著性检验,多元线性回归的显著性检验,同样是需要经过 T检验,F检验,和R^2(R平方)相关系统检验。在R语言中这三种检验的cpcp彩票方法 都已被实现,cpcp彩票cpcp彩票我 们 只需要把结果解读,cpcp彩票cpcp彩票我 们 可以summary()函数来提取模型的计算结果。


> summary(lm1)

Call:
lm(formula = y ~ x1 + x2 + x3 + x4, data = df)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.9648 -1.3241 -0.0319  1.2403  5.4194 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 212.87796   58.26788   3.653 0.000323 ***
x1            0.85423    0.10958   7.795 2.50e-13 ***
x2            0.66724    0.12938   5.157 5.57e-07 ***
x3           -0.66741    0.15421  -4.328 2.28e-05 ***
x4            0.48214    0.01959  24.609  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.028 on 221 degrees of freedom
Multiple R-squared:  0.9725,	Adjusted R-squared:  0.972 
F-statistic:  1956 on 4 and 221 DF,  p-value: < 2.2e-16
  • T检验:所自变量都是非常显著***
  • F检验:同样是非常显著,p-value < 2.2e-16
  • 调整后的R^2:相关性非常强为0.972

最后,cpcp彩票cpcp彩票我 们 通过的回归参数的检验与回归方程的检验,得到最后多元线性回归方程为:


y = 212.87796 + 0.85423 * x1 + 0.66724 * x2 - 0.66741 * x3 + 0.48214 * x4

即

螺纹钢 = 212.87796 + 0.85423 * 焦炭 + 0.66724 * 焦煤 - 0.66741 * 铁矿石 + 0.48214 * 热卷

2.4 残差分析和异常点检测

在得到的回归模型进行显著性检验后,还要在做残差分析(预测值和实际值之间的差),检验模型的正确性,残差必须服从正态分布N(0,σ^2)。直接用plot()函数生成4种用于模型诊断的图形,进行直观地分析。


> par(mfrow=c(2,2))
> plot(lm1)

m01

  • 残差和拟合值(左上),残差和拟合值之间数据点均匀分布在y=0两侧,呈现出随机的分布,红色线呈现出一条平稳的曲线并没有明显的形状特征。
  • 残差QQ图(右上),数据点按对角直线排列,趋于一条直线,并被对角直接穿过,直观上符合正态分布。
  • 标准化残差平方根和拟合值(左下),数据点均匀分布在y=0两侧,呈现出随机的分布,红色线呈现出一条平稳的曲线并没有明显的形状特征。
  • 标准化残差和杠杆值(右下),没有出现红色的等高线,则说明数据中没有特别影响回归结果的异常点。

结论,没有明显的异常点,残差符合假设条件。

2.5. 模型预测

cpcp彩票cpcp彩票我 们 得到了多元线性回归方程的公式,就可以对数据进行预测了。cpcp彩票cpcp彩票我 们 可以用R语言的predict()函数来计算预测值y0和相应的预测区间,并把实际值和预测值一起可视化化展示。


> par(mfrow=c(1,1))  #设置画面布局

# 预测计算
> dfp<-predict(lm1,interval="prediction")

# 打印预测时
> head(dfp,10)
                fit      lwr      upr
2014-03-21 3160.526 3046.425 3274.626
2014-03-24 3193.253 3078.868 3307.637
2014-03-25 3240.389 3126.171 3354.607
2014-03-26 3228.565 3114.420 3342.710
2014-03-27 3222.528 3108.342 3336.713
2014-03-28 3262.399 3148.132 3376.666
2014-03-31 3291.996 3177.648 3406.344
2014-04-01 3305.870 3191.447 3420.294
2014-04-02 3275.370 3161.018 3389.723
2014-04-03 3297.358 3182.960 3411.755

# 合并数据
> mdf<-merge(df$y,dfp)	 

# 画图
> draw(mdf)

m02

图例说明

  • y, 实际价格,红色线
  • fit, 预测价格,绿色线
  • lwr,预测最低价,蓝色线
  • upr,预测最高价,紫色线

从图中看出,实际价格y和预测价格fit,在大多数的时候都是很贴近的。cpcp彩票cpcp彩票我 们 的一个模型就训练好了!

3. 模型cpcp彩票优化

上文中,cpcp彩票cpcp彩票我 们 已经很顺利的发现了一个非常不错的模型。如果要进行模型cpcp彩票优化 ,可以用R语言中update()函数进行模型的调整。cpcp彩票cpcp彩票我 们 首先检查一下每个自变量x1,x2,x3,x4和因变量y之间的关系。

pairs(as.data.frame(df))

m03

从图中,cpcp彩票cpcp彩票我 们 可以发现x2与Y的关系,可能是最偏离线性的。那么,cpcp彩票cpcp彩票我 们 尝试对多元线性回归模型进行调整,从原模型中去掉x2变量。



# 模型调整
> lm2<-update(lm1, .~. -x2)

> summary(lm2)

Call:
lm(formula = y ~ x1 + x3 + x4, data = df)

Residuals:
    Min      1Q  Median      3Q     Max 
-6.0039 -1.3842  0.0177  1.3513  4.8028 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 462.47104   34.26636   13.50  < 2e-16 ***
x1            1.08728    0.10543   10.31  < 2e-16 ***
x3           -0.40788    0.15394   -2.65  0.00864 ** 
x4            0.42582    0.01718   24.79  < 2e-16 ***
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.142 on 222 degrees of freedom
Multiple R-squared:  0.9692,	Adjusted R-squared:  0.9688 
F-statistic:  2330 on 3 and 222 DF,  p-value: < 2.2e-16

当把自变量x2去掉后,自变量x3的T检验反而变大了,同时Adjusted R-squared变小了,所以cpcp彩票cpcp彩票我 们 这次调整是有问题的。

如果通过生产和原材料的内在逻辑分析,焦煤与焦炭属于上下游关系。焦煤是生产焦炭的一种原材料,焦炭是焦煤与其他炼焦煤经过配煤焦化形成的cpcp彩票产品 ,一般生产 1 吨焦炭需要1.33 吨炼焦煤,其中焦煤至少占 30% 。

cpcp彩票cpcp彩票我 们 把焦煤 和 焦炭的关系改变一下,增加x1*x2的关系匹配到模型,看看效果。


# 模型调整
> lm3<-update(lm1, .~. + x1*x2)
> summary(lm3)

Call:
lm(formula = y ~ x1 + x2 + x3 + x4 + x1:x2, data = df)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.8110 -1.3501 -0.0595  1.2019  5.3884 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) 7160.32231 7814.50048   0.916    0.361    
x1            -8.45530   10.47167  -0.807    0.420    
x2           -10.58406   12.65579  -0.836    0.404    
x3            -0.64344    0.15662  -4.108 5.63e-05 ***
x4             0.48363    0.01967  24.584  < 2e-16 ***
x1:x2          0.01505    0.01693   0.889    0.375    
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.029 on 220 degrees of freedom
Multiple R-squared:  0.9726,	Adjusted R-squared:  0.972 
F-statistic:  1563 on 5 and 220 DF,  p-value: < 2.2e-16

从结果中发现,增加了x1*x2列后,原来的x1,x2和Intercept的T检验都不显著。继续调整模型,从模型中去掉x1,x2两个自变量。


# 模型调整
> lm4<-update(lm3, .~. -x1-x2)
> summary(lm4)

Call:
lm(formula = y ~ x3 + x4 + x1:x2, data = df)

Residuals:
    Min      1Q  Median      3Q     Max 
-4.9027 -1.2516 -0.0167  1.2748  5.8683 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept)  6.950e+02  1.609e+01  43.183  < 2e-16 ***
x3          -6.284e-01  1.530e-01  -4.108 5.61e-05 ***
x4           4.959e-01  1.785e-02  27.783  < 2e-16 ***
x1:x2        1.133e-03  9.524e-05  11.897  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.035 on 222 degrees of freedom
Multiple R-squared:  0.9722,	Adjusted R-squared:  0.9718 
F-statistic:  2588 on 3 and 222 DF,  p-value: < 2.2e-16

从调整后的结果来看,效果还不错。不过,也并没有比最初的模型有所提高。

对于模型调整的过程,如果cpcp彩票cpcp彩票我 们 手动调整测试时,一般都会基于业务知识来操作。如果是按照数据指标来计算,cpcp彩票cpcp彩票我 们 可以用R语言中提供的逐步回归的cpcp彩票优化 cpcp彩票方法 ,通过AIC指标来判断是否需要参数cpcp彩票优化 。


#对lm1模型做逐步回归
> step(lm1)
Start:  AIC=324.51
y ~ x1 + x2 + x3 + x4

       Df Sum of Sq    RSS    AIC
               908.8 324.51
- x3    1     77.03  985.9 340.90
- x2    1    109.37 1018.2 348.19
- x1    1    249.90 1158.8 377.41
- x4    1   2490.56 3399.4 620.65

Call:
lm(formula = y ~ x1 + x2 + x3 + x4, data = df)

Coefficients:
(Intercept)           x1           x2           x3           x4  
   212.8780       0.8542       0.6672      -0.6674       0.4821  

通过计算AIC指标,lm1的模型AIC最小时为324.51,每次去掉一个自变量都会让AIC的值变大,所以cpcp彩票cpcp彩票我 们 还是不调整比较好。

对刚才的lm3模型做逐步回归的模型调整。


#对lm3模型做逐步回归
> step(lm3)
Start:  AIC=325.7               #当前AIC
y ~ x1 + x2 + x3 + x4 + x1:x2

        Df Sum of Sq    RSS    AIC
- x1:x2  1      3.25  908.8 324.51
                905.6 325.70
- x3     1     69.47  975.1 340.41
- x4     1   2487.86 3393.5 622.25

Step:  AIC=324.51               #去掉x1*x2项的AIC
y ~ x1 + x2 + x3 + x4

       Df Sum of Sq    RSS    AIC
               908.8 324.51
- x3    1     77.03  985.9 340.90
- x2    1    109.37 1018.2 348.19
- x1    1    249.90 1158.8 377.41
- x4    1   2490.56 3399.4 620.65

Call:
lm(formula = y ~ x1 + x2 + x3 + x4, data = df)

Coefficients:
(Intercept)           x1           x2           x3           x4  
   212.8780       0.8542       0.6672      -0.6674       0.4821  

通过AIC的判断,去掉X1*X2项后AIC最小,最后的检验结果告诉cpcp彩票cpcp彩票我 们 ,还是原初的模型是最好的。

4. 案例:黑色系期货日K线数据验证

最后,cpcp彩票cpcp彩票我 们 用上面5个期货合约的日K线数据测试一下,找到多元回归关系。


> lm9<-lm(y~x1+x2+x3+x4,data=df)  # 日K线数据
> summary(lm9)

Call:
lm(formula = y ~ x1 + x2 + x3 + x4, data = df)

Residuals:
     Min       1Q   Median       3Q      Max 
-173.338  -37.470    3.465   32.158  178.982 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 386.33482   31.07729  12.431  < 2e-16 ***
x1            0.75871    0.07554  10.045  < 2e-16 ***
x2           -0.62907    0.14715  -4.275 2.24e-05 ***
x3            1.16070    0.05224  22.219  < 2e-16 ***
x4            0.46461    0.02168  21.427  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 57.78 on 565 degrees of freedom
Multiple R-squared:  0.9844,	Adjusted R-squared:  0.9843 
F-statistic:  8906 on 4 and 565 DF,  p-value: < 2.2e-16

数据集的基本统计信息。


> summary(df)
     Index                           x1               x2       
 Min.   :2014-03-21 00:00:00   Min.   : 606.5   Min.   :494.0  
 1st Qu.:2014-10-21 06:00:00   1st Qu.: 803.5   1st Qu.:613.1  
 Median :2015-05-20 12:00:00   Median : 939.0   Median :705.8  
 Mean   :2015-05-21 08:02:31   Mean   : 936.1   Mean   :695.3  
 3rd Qu.:2015-12-16 18:00:00   3rd Qu.:1075.0   3rd Qu.:773.0  
 Max.   :2016-07-25 00:00:00   Max.   :1280.0   Max.   :898.0  

       x3              x4             y       
 Min.   :284.0   Min.   :1691   Min.   :1626  
 1st Qu.:374.1   1st Qu.:2084   1st Qu.:2012  
 Median :434.0   Median :2503   Median :2378  
 Mean   :476.5   Mean   :2545   Mean   :2395  
 3rd Qu.:545.8   3rd Qu.:2916   3rd Qu.:2592  
 Max.   :825.0   Max.   :3480   Max.   :3414  

m04

对于日K线数据,黑色系的5个品种,同样具有非常强的相关关系,那么cpcp彩票cpcp彩票我 们 就可以把这个结论应用到实际的交易中了。

本文通过多元回归的统计分析cpcp彩票方法 ,介绍多元回归在金融市场的基本应用。cpcp彩票cpcp彩票我 们 通过建立因变量和多个自变量的模型,从而发现cpcp彩票生活中更复杂的规律,并建立有效的验证指标。让cpcp彩票cpcp彩票我 们 cpcp彩票cpcp彩票我 们 的cpcp彩票技术 优势,去金融市场抢钱吧。

转载请注明出处:
http://whgmhg.com/r-multi-linear-regression

打赏作者

R语言解读一元线性回归模型

R的极客理想系列文章,涵盖了R的思想,使用,cpcp彩票工具 ,创新等的一系列要点,以cpcp彩票我 个人的学习和体验去诠释R的强大。

R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,cpcp彩票互联网 ….都在使用R语言。

要成为有理想的极客,cpcp彩票cpcp彩票我 们 不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让cpcp彩票cpcp彩票我 们 一起动起来吧,开始R的极客理想。

cpcp彩票关于 作者:

  • 张丹(Conan), 程序员R,Nodejs,Java
  • weibo:@Conan_Z
  • blog: http://whgmhg.com
  • email: bsspirit@gmail.com

转载请注明出处:
http://whgmhg.com/r-linear-regression/

reg-liner

前言

在cpcp彩票cpcp彩票我 们 的日常cpcp彩票生活中,存在大量的具有相关性的事件,比如大气压和海拔高度,海拔越高大气压强越小;人的身高和体重,普遍来看越高的人体重也越重。还有一些可能存在相关性的事件,比如知识水平越高的人,收入水平越高;市场化的国家经济越好,则货币越强势,反而全球经济危机,黄金等避险资产越走强。

如果cpcp彩票cpcp彩票我 们 要研究这些事件,找到不同变量之间的关系,cpcp彩票cpcp彩票我 们 就会用到回归分析。一元线性回归分析是处理两个变量之间关系的最简单模型,是两个变量之间的线性相关关系。让cpcp彩票cpcp彩票我 们 一起发现cpcp彩票生活中的规律吧。

由于本文为非统计的专业文章,所以当出现与教课书不符的描述,请以教课书为准。本文力求用简化的语言,来介绍一元线性回归的知识,同时配合R语言的实现。

目录

  1. 一元线性回归介绍
  2. 数据集和数学模型
  3. 回归参数估计
  4. 回归方程的显著性检验
  5. 残差分析和异常点检测
  6. 模型预测

1. 一元线性回归介绍

回归分析(Regression Analysis)是用来确定2个或2个以上变量间关系的一种统计分析cpcp彩票方法 。如果回归分析中,只包括一个自变量X和一个因变量Y时,且它们的关系是线性的,那么这种回归分析称为一元线性回归分析。

回归分析属于统计学的基本模型,涉及统计学基础,就会有一大堆的名词和知识点需要介绍。

在回归分析中,变量有2类:因变量 和 自变量。因变量通常是指实际问题中所关心的指标,用Y表示。而自变量是影响因变量取值的一个变量,用X表示,如果有多个自变量则表示为X1, X2, …, Xn。

回归分析研究的主要步骤:

  1. 确定因变量Y 与 自变量X1, X2, …, Xn 之间的定量关系表达式,即回归方程。
  2. 对回归方程的置信度检查。
  3. 判断自变量Xn(n=1,2,…,m)对因变量的影响。
  4. 利用回归方程进行预测。

本文会根据回归分析的的主要步骤,进行结构梳理,介绍一元线性回归模型的使用cpcp彩票方法 。

reg

2. 数据集和数学模型

先让cpcp彩票cpcp彩票我 们 通过一个例子开始吧,用一组简单的数据来说明一元线性回归分析的数学模型的原理和公式。找出下面数据集中Y与X的定量关系。

数据集为2016年3月1日,白天开盘的交易数据,为锌的2个期货合约的分钟线的价格数据。数据集包括有3列,索引列为时间,zn1.Close为ZN1604合约的1分钟线的报价数据,zn2.Close为ZN1605合约的1分钟线的报价数据。

数据集如下:


                    zn1.Close zn2.Close
2016-03-01 09:01:00     14075     14145
2016-03-01 09:02:00     14095     14160
2016-03-01 09:03:00     14095     14160
2016-03-01 09:04:00     14095     14165
2016-03-01 09:05:00     14120     14190
2016-03-01 09:06:00     14115     14180
2016-03-01 09:07:00     14110     14170
2016-03-01 09:08:00     14110     14175
2016-03-01 09:09:00     14105     14170
2016-03-01 09:10:00     14105     14170
2016-03-01 09:11:00     14120     14180
2016-03-01 09:12:00     14105     14170
2016-03-01 09:13:00     14105     14170
2016-03-01 09:14:00     14110     14175
2016-03-01 09:15:00     14105     14175
2016-03-01 09:16:00     14120     14185
2016-03-01 09:17:00     14125     14190
2016-03-01 09:18:00     14115     14185
2016-03-01 09:19:00     14135     14195
2016-03-01 09:20:00     14125     14190
2016-03-01 09:21:00     14135     14205
2016-03-01 09:22:00     14140     14210
2016-03-01 09:23:00     14140     14200
2016-03-01 09:24:00     14135     14205
2016-03-01 09:25:00     14140     14205
2016-03-01 09:26:00     14135     14205
2016-03-01 09:27:00     14130     14205

cpcp彩票cpcp彩票我 们 以zn1.Close列的价格为X,zn2.Close列的价格为Y,那么试试找到自变量X和因变量Y的关系的表达式。

为了直观起见,cpcp彩票cpcp彩票我 们 可以先画出一张散点图,以X为横坐标,Y为纵坐标,每个点对应一个X和一个Y。


# 数据集已存在df变量中
> head(df)
                    zn1.Close zn2.Close
2016-03-01 09:01:00     14075     14145
2016-03-01 09:02:00     14095     14160
2016-03-01 09:03:00     14095     14160
2016-03-01 09:04:00     14095     14165
2016-03-01 09:05:00     14120     14190
2016-03-01 09:06:00     14115     14180

# 分别给x,y赋值
> x<-as.numeric(df[,1])
> y<-as.numeric(df[,2])

# 画图
> plot(y~x+1)

01

从散点图上发现 X和Y 的排列基本是在一条直线附近,那么cpcp彩票cpcp彩票我 们 可以假设X和Y的关系是线性,可以用公式表式为。

Y = a + b * X + c
  • Y,为因变量
  • X,为自变量
  • a,为截距
  • b,为自变量系数
  • a+b*X, 表示Y随X的变化而线性变化的部分
  • c, 为残差或随机误差,是其他一切不确定因素影响的总和,其值不可观测。假定c是符合均值为0方差为σ^2的正态分布 ,记作c~N(0,σ^2)

对于上面的公式,称函数f(X) = a + b * X 为一元线性回归函数,a为回归常数,b为回归系数,统称回归参数。X 为回归自变量或回归因子,Y 为回归因变量或响应变量。如果(X1,Y1),(X2,Y2)…(Xn,Yn)是(X,Y)的一组观测值,则一元线性回归模型可表示为


Yi = a + b * X + ci,     i= 1,2,...n

其中E(ci)=0, var(ci)=σ^2, i=1,2,...n

通过对一元线性回归模型的数学定义,接下来让cpcp彩票cpcp彩票我 们 利用数据集做回归模型的参数估计。

3. 回归参数估计

对于上面的公式,回归参数a,b是cpcp彩票cpcp彩票我 们 不知道的,cpcp彩票cpcp彩票我 们 需要用参数估计的cpcp彩票方法 来计算出a,b的值,而从得到数据集的X和Y的定量关系。cpcp彩票cpcp彩票我 们 的目标是要计算出一条直线,使直接线上每个点的Y值和实际数据的Y值之差的平方和最小,即(Y1实际-Y1预测)^2+(Y2实际-Y2预测)^2+ …… +(Yn实际-Yn预测)^2 的值最小。参数估计时,cpcp彩票cpcp彩票我 们 只考虑Y随X的线性变化的部分,而残差c是不可观测的,参数估计法并不需要考虑残差,对于残差的分析在后文中介绍。

令公式变形为a和b的函数Q(a,b), 即 (Y实际-Y测试)的平方和,变成到(Y实际 – (a+b*X))的平方和。

reg2

公式一 回归参数变形公式

通过最小二乘估计推导出a和b的求解公式,详细的推导过程请参考文章一元线性回归的细节

reg3

公式二 回归参数计算公式

其中 x和y的均值,计算cpcp彩票方法 如下

reg4

公式三 均值计算公式

有了这个公式,cpcp彩票cpcp彩票我 们 就可以求出a和b两个的回归参数的解了。

接下来,cpcp彩票cpcp彩票我 们 用R语言来实现对上面数据的回归模型的参数估计,R语言中可以用lm()函数来实现一元线性回归的建模过程。


# 建立线性回归模型
> lm.ab<-lm(y ~ 1+x)

# 打印参数估计的结果
> lm.ab

Call:
lm(formula = y ~ 1 + x)

Coefficients:
(Intercept)            x  
   -349.493        1.029  

如果cpcp彩票你 想动手来计算也可以自己实现公式。


# x均值
> Xm<-mean(x);Xm 
[1] 14034.82

# y均值
> Ym<-mean(y);Ym
[1] 14096.76

# 计算回归系数
> b <- sum((x-Xm)*(y-Ym)) / sum((x-Xm)^2) ;b
[1] 1.029315

# 计算回归常数
> a <- Ym - b * Xm;a
[1] -349.493

回归参数a和b的计算结果,与lm()函数的计算结果是相同的。有了a和b的值,cpcp彩票cpcp彩票我 们 就可以画出这条近似的直接线。

计算公式为:

Y= a + b * X = -349.493 + 1.029315 * X 

画出回归线。


> plot(y~x+1)
> abline(lm.ab)

02

这条直线是cpcp彩票cpcp彩票我 们 用数据拟合出来的,是一个近似的值。cpcp彩票cpcp彩票我 们 看到有些点在线上,有些点不在线上。那么要评价这条回归线拟合的好坏,cpcp彩票cpcp彩票我 们 就需要对回归模型进行显著性检验。

4. 回归方程的显著性检验

从回归参数的公式二可知,在计算过程中并不一定要知道Y和X是否有线性相关的关系。如果不存相关关系,那么回归方程就没有任何意义了,如果Y和X是有相关关系的,即Y会随着X的变化而线性变化,这个时候一元线性回归方程才有意义。所以,cpcp彩票cpcp彩票我 们 需要用假设检验的cpcp彩票方法 ,来验证相关性的有效性。

通常会采用三种显著性检验的cpcp彩票方法 。

  • T检验法:T检验是检验模型某个自变量Xi对于Y的显著性,通常用P-value判断显著性,小于0.01更小时说明这个自变量Xi与Y相关关系显著。
  • F检验法:F检验用于对所有的自变量X在整体上看对于Y的线性显著性,也是用P-value判断显著性,小于0.01更小时说明整体上自变量与Y相关关系显著。
  • R^2(R平方)相关系统检验法:用来判断回归方程的拟合程度,R^2的取值在0,1之间,越接近1说明拟合程度越好。

在R语言中,上面列出的三种检验的cpcp彩票方法 都已被实现,cpcp彩票cpcp彩票我 们 只需要把结果解读。上文中,cpcp彩票cpcp彩票我 们 已经通过lm()函数构建一元线性回归模型,然后可以summary()函数来提取模型的计算结果。


> summary(lm.ab)      # 计算结果

Call:
lm(formula = y ~ 1 + x)

Residuals:
     Min       1Q   Median       3Q      Max 
-11.9385  -2.2317  -0.1797   3.3546  10.2766 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -3.495e+02  7.173e+01  -4.872 2.09e-06 ***
x            1.029e+00  5.111e-03 201.390  < 2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.232 on 223 degrees of freedom
Multiple R-squared:  0.9945,	Adjusted R-squared:  0.9945 
F-statistic: 4.056e+04 on 1 and 223 DF,  p-value: < 2.2e-16

模型解读:

  • Call,列出了回归模型的公式。
  • Residuals,列出了残差的最小值点,1/4分位点,中位数点,3/4分位点,最大值点。
  • Coefficients,表示参数估计的计算结果。
  • Estimate,为参数估计列。Intercept行表示常数参数a的估计值 ,x行表示自变量x的参数b的估计值。
  • Std. Error,为参数的标准差,sd(a), sd(b)
  • t value,为t值,为T检验的值
  • Pr(>|t|) ,表示P-value值,用于T检验判定,匹配显著性标记
  • 显著性标记,***为非常显著,**为高度显著, **为显著,·为不太显著,没有记号为不显著。
  • Residual standard error,表示残差的标准差,自由度为n-2。
  • Multiple R-squared,为相关系数R^2的检验,越接近1则越显著。
  • Adjusted R-squared,为相关系数的修正系数,解决多元回归自变量越多,判定系数R^2越大的问题。
  • F-statistic,表示F统计量,自由度为(1,n-2),p-value:用于F检验判定,匹配显著性标记。

通过查看模型的结果数据,cpcp彩票cpcp彩票我 们 可以发现通过T检验的截距和自变量x都是非常显著,通过F检验判断出整个模型的自变量是非常显著,同时R^2的相关系数检验可以判断自变量和因变量是高度相关的。

最后,cpcp彩票cpcp彩票我 们 通过的回归参数的检验与回归方程的检验,得到最后一元线性回归方程为:

Y = -349.493 + 1.029315 * X 

5. 残差分析和异常点检测

在得到的回归模型进行显著性检验后,还要在做残差分析(预测值和实际值之间的差),检验模型的正确性,残差必须服从正态分布N(0,σ^2)。

cpcp彩票cpcp彩票我 们 可以自己计算数据残差,并进行正态分布检验。


# 残差
> y.res<-residuals(lm.ab)

# 打印前6条数据
> head(y.res)
        1         2         3         4         5         6 
6.8888680 1.3025744 1.3025744 6.3025744 5.5697074 0.7162808 

# 正态分布检验
> shapiro.test(y.res)

	Shapiro-Wilk normality test

data:  y.res
W = 0.98987, p-value = 0.1164

# 画出残差散点图
> plot(y.res)

09

对残差进行Shapiro-Wilk正态分布检验,W接近1,p-value>0.05,证明数据集符合正态分布!cpcp彩票关于 正态分布的介绍,请参考文章常用连续型分布介绍及R语言实现

同时,cpcp彩票cpcp彩票我 们 也可以用R语言的cpcp彩票工具 生成4种用于模型诊断的图形,简化自己写代码计算的操作。


# 画图,回车展示下一张
> plot(lm.ab)    
Hit  to see next plot:   # 残差拟合图
Hit  to see next plot:   # 残差QQ图
Hit  to see next plot:   # 标准化的残差对拟合值 
Hit  to see next plot:   # 标准化残差对杠杆值

04

图1,残差和拟合值对比图

对残差和拟合值作图,横坐标是拟合值,纵坐标是残差。残差和拟合值之间,数据点均匀分布在y=0两侧,呈现出随机的分布,红色线呈现出一条平稳的曲线并没有明显的形状特征,说明残差数据表现非常好。

05

图2,残差QQ图

残差QQ图,用来描述残差是否符合正态分布。图中的数据点按对角直线排列,趋于一条直线,并被对角直接穿过,直观上符合正态分布。对于近似服从正态分布的标准化残差,应该有 95% 的样本点落在 [-2,2] 区间内。

06

图3,标准化残差平方根和拟合值对比图

对标准化残差平方根和拟合值作图,横坐标是拟合值,纵坐标是标准化后的残差平方根。与残差和拟合值对比图(图1)的判断cpcp彩票方法 类似,数据随机分布,红色线呈现出一条平稳的曲线,无明显的形状特征。

07

图4,标准残差和杠杆值对比图

对标准化残差和杠杆值作图,虚线表示的cooks距离等高线,通常用Cook距离度量的回归影响点。本图中没有出现红色的等高线,则说明数据中没有特别影响回归结果的异常点。

如果想把把4张图画在一起进行展示,可以改变画布布局。


> par(mfrow=c(2,2))
> plot(lm.ab)

08

看到上面4幅中,每幅图上都有一些点被特别的标记出来了,这些点是可能存在的异常值点,如果要对模型进行cpcp彩票优化 ,cpcp彩票cpcp彩票我 们 可以从这些来入手。但终于本次残差分析的结果已经很好了,所以对于异常点的cpcp彩票优化 ,可能并不能明显的提升模型的效果。

从图中发现,索引编号为27和192的2个点在多幅图中出现。cpcp彩票cpcp彩票我 们 假设这2个点为异常点,从数据中去掉这2个点,再进行显著性检验和残差分析。


# 查看27和192
> df[c(27,192),]
                    zn1.Close zn2.Close
2016-03-01 09:27:00     14130     14205
2016-03-01 14:27:00     14035     14085

# 新建数据集,去掉27和192
> df2<-df[-c(27,192),]

回归建模和显著性检验。


> x2<-as.numeric(df2[,1])
> y2<-as.numeric(df2[,2])
> lm.ab2<-lm(y2 ~ 1+x2)
> summary(lm.ab2)

Call:
lm(formula = y2 ~ 1 + x2)

Residuals:
    Min      1Q  Median      3Q     Max 
-9.0356 -2.1542 -0.2727  3.3336  9.5879 

Coefficients:
              Estimate Std. Error t value Pr(>|t|)    
(Intercept) -3.293e+02  7.024e+01  -4.688 4.83e-06 ***
x2           1.028e+00  5.004e-03 205.391  < 2e-16 ***
---
Signif. codes:  
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 4.117 on 221 degrees of freedom
Multiple R-squared:  0.9948,	Adjusted R-squared:  0.9948 
F-statistic: 4.219e+04 on 1 and 221 DF,  p-value: < 2.2e-16

对比这次的显著性检验结果和之前结果,T检验,F检验 和 R^2检验,并没有明显的效果提升,结果和cpcp彩票我 预想的是一样的。所以,通过残差分析和异常点分析,cpcp彩票我 认为模型是有效的。

6. 模型预测

最后,cpcp彩票cpcp彩票我 们 获得了一元线性回归方程的公式,就可以对数据进行预测了。比如,对给定X=x0时,计算出y0=a+b*x0的值,并计算出置信度为1-α的预测区间。

当X=x0,Y=y0时,置信度为1-α的预测区间为

reg5

reg6

cpcp彩票cpcp彩票我 们 可以用R语言的predict()函数来计算预测值y0,和相应的预测区间。程序算法如下。


> new<-data.frame(x=14040)
> lm.pred<-predict(lm.sol,new,interval="prediction",level=0.95)

# 预测结果
> lm.pred
       fit      lwr      upr
1 14102.09 14093.73 14110.44

当x0=14040时,在预测区间为0.95的概率时,y0的值为 14102,预测区间为[14093.73,14110.44]。

cpcp彩票cpcp彩票我 们 通过图形来表示。


> plot(y~x+1)
> abline(lm.ab,col='red')
> points(rep(newX$x,3),y=lm.pred,pch=19,col=c('red','blue','green'))

03

其中,红色点为y0的值,蓝色点为预测区间最小值,绿色点为预测区间最大值。

对于统计模型中最核心部分就在结果解读,本文介绍了一元回归模型的基本的建模过程和模型的详细解读cpcp彩票方法 。在cpcp彩票cpcp彩票我 们 掌握了这种cpcp彩票方法 以后,就可以更容易地理解和学习 多元回归,非线性回归 等cpcp彩票更多 的模型,并把这些模型应用到实际的工作中了。下一篇文章R语言解读多元线性回归模型,请继续阅读。

转载请注明出处:
http://whgmhg.com/r-linear-regression/

打赏作者